
LLNL-PRES-562817
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

ROSE::FTTransform – A Source-to-Source
Translation Framework for Exascale
Fault-Tolerance Research

*Chalmers University of
Technology, Sweden

†Lawrence Livermore National
Laboratory, USA

Lawrence Livermore National Laboratory 2

Outline

§  Motivation

§  Approach

§  Results

§  Summary

§  Future work

Lawrence Livermore National Laboratory 3

Motivation

§  Resilience: a big challenge for Exascale systems
•  Millions of processors/cores
•  Low-power processors/cores: power requirements
—  Increased sensitivity to internal/external events
—  Transient faults: going wrong without being noticed

•  Streamlined and simple processors
—  Cannot afford pure hardware-based resilience

§  An attractive solution
•  Software-implemented hardware fault tolerance (SIHFT)
•  In house source-to-source compiler infrastructure:

ROSE@LLNL

Lawrence Livermore National Laboratory 4

Approach: compiler-based
transformations to add resilience
§  Source code annotation (pragmas)

•  What to protect
•  What to do when things go wrong
•  Can be auto inserted later on

§  Source-to-source translator
•  Fault detection: N-Modular

Redundancy (NMR)
•  Connect to fault-handling policies

§  Backend compiler: vendor
compilers or GCC
•  binary executable

§  Intel PIN: fault injection

ROSE::FTTransform

Backend
Compiler

Annotated
source code

Transformed
source code

Binary
executable

Fault Injection
(Intel PIN)

Lawrence Livermore National Laboratory 5

Hierarchical structure of fault-
handling policies

§  Controller policies: e.g. Final-wish, Second-chance. Must be used with next-level
policies

§  Terminal policies: final decision about how to unify results. e.g adjudicators
implementing voting strategies, mean, median, majority voting, etc.

Lawrence Livermore National Laboratory 6

Source code pragmas and semantics
Final-wish Second-chance

Pragmas
syntax

#pragma resilience FT-FW
(NEXT_POLICY)
y =f (x);

#pragma resilience FT-SC(NEXT_POLICY,
NUM_ITER)
y =f (x);

Semantics // N-Modular Redundancy
y[0] = f(x);
 ...
y[N-1] = f(x) ;

// Tentatively pick one as the final result
y = PICK_RANDOM(y[0] , . . . , y[N-1]);
// Fault detection
if (!EQUALS(y[0] , . . . , y[N-1] ,y))
{
// Fault handling
 NEXT_POLICY;
}

for (int rI = 0 ; ; rI ++)
{
 // N-Modular Redundancy
 y[0] = f(x) ;
 ...
 y[N-1] = f(x) ;

// Tentatively pick one as the final result
y = PICK_RANDOM(y[0] , . . . , y[N-1]);

 // No Fault is detected?
 if (EQUALS(y[0] , . . . , y[N-1] ,y))
 break;
 // Reaching the limit of having a second chance ?
 else if (rI == NUM_ITER)
 // Fault handling
 NEXT_POLICY;
}

Lawrence Livermore National Laboratory 7

Concerns for implementing source
level N-Modular Redundancy
§  ROSE::FTTransform’s central idea:

•  Detects/handles transient processor faults via
redundant execution of critical source code statements
—  Naive implementation: duplication of N copies of computation

•  Feasible?
—  back-end compilers have Common Subexpression Elimination

(CSE)

•  Overhead?
—  Nx times slower in worst case

Lawrence Livermore National Laboratory 8

Transformations: optimizer-proof
code redundancy

Using an extra pointer to
help preserve source code
redundancy

Statement to be protected

Lawrence Livermore National Laboratory 9

Transformations: reducing overhead
for NMR

Relying on baseline double
modular redundancy (DMR)
to help reduce overhead

Statement to be protected

Lawrence Livermore National Laboratory 10

Implementation of
ROSE::FTTransform

C/C++/Fortran
OpenMP/UPC
Source Code

Analyzed/
Transformed

Source

EDG Front-end/
Open Fortran Parser

IR
(AST)

Unparser

ROSE compiler infrastructure

2009
Winner

www.roseCompiler.org

Control Flow

ROSE-based source-to-source tools

System Dependence

Data Dependence

Backend
Compiler

Executable

Lawrence Livermore National Laboratory 11

Results: necessity and effectiveness
of optimizer-proof code redundancy

Transformation Method PAPI_FP_INS
DMR/Orig.

(O1)

PAPI_FP_INS
DMR/Orig.

(O2)

PAPI_FP_INS
DMR/Orig.

(O3)
Our method of using
pointers

Doubled Doubled Doubled

Naïve Duplication The same The same

The same

Naïve Duplication buried
within a basic block

The same The same The same

§  Check if redundant computation can survive compiler optimizations
•  Jacobi 1-D 3-point kernel 1) original version, and 2) protected version using

double module redundancy.
•  PAPI (PAPI_FP_INS): the number of floating point instructions for both

versions
•  GCC 4.3.4, O1 to O3

Lawrence Livermore National Laboratory 12

Results: performance overhead
§  Performance overhead: DMR

•  Also good approximation for general NMR, excluding
overhead from the incidental N-2 redundancy and fault-
handling mechanism

•  Experimental environment
—  4-core AMD Opteron: L1 data: 64K, L2: 512K, L3 6M, 129GB

Memory
—  64-bit SUSE Enterprise 11.1, GCC 4.3.4 (-03)

•  Benchmarks:
—  three versions of Jacobi : 1D 1-point, 1D 3-point, and 2D 5-point
—  Livermore loops*

•  Explore impact of latencies of the original codes (Jacobi):
—  Data set size: arrays fitting into cache or not
—  Iteration strides: 1 vs. 8
—  Element sizes: single vs. double precision

* http://en.wikipedia.org/wiki/Livermore_loops

Lawrence Livermore National Laboratory 13

Results (cont.) ─ overhead
§  Jacobi kernel:

•  Overhead: 0% to 30%
•  Minimum overhead
—  Stride=8
—  Array size 16Kx16K
—  Double precision

•  The more original
 latency, the
 less overhead of
 added redundancy

•  Livermore kernel
—  Kernel 1 (Hydro fragment) – 20%
—  Kernel 4 (Banded linear equations) – 40%
—  Kernel 5 (Tri-diagonal elimination) – 26%
—  Kernel 11 (First sum) – 2%

Lawrence Livermore National Laboratory 14

Results: fault coverage and
effectiveness
§  Benchmarks: Livermore Loops suite

•  kernels #1, #4, #5, and #11
•  Three versions for each kernel:
—  Original unprotected code
—  Mean: TMR (using baseline DMR) and mean voting is added.
—  Exact: TMR (using baseline DMR) and exact majority voting is added.

§  Fault injection: Intel Pin tool
•  Training runs: record correct instruction counts and output
•  Fault injection runs (500 times): flip a random bit of input general

purpose/floating point register of a random instruction

§  Exit condition categories the execution
•  Correct result, Access fault (invalid memory access), Fail silent,

Invalid instruction, Invalid arithmetic operation

Lawrence Livermore National Laboratory 15

Results (cont.) - Fault coverage

Lawrence Livermore National Laboratory 16

Results (cont.) - Fault coverage

Significant improvements: Loop#1
•  Majority voting > Mean voting
•  Shrinking fail silient (soft errors)

compared to unprotected version

Lawrence Livermore National Laboratory 17

Results (cont.) - Fault coverage

Still visible improvements for
Loop #5 and #11
* Observed many access faults
due to many array index corruptions

Lawrence Livermore National Laboratory 18

Summary
§  Fault handling via source-level code transformation

•  + Low cost and flexible
•  + Keeps programmer in-the-loop
•  - Can’t specify low-level details

§  Feasibility: work with compiler optimizations.
•  CSE issues can be overcome with careful program

transformation

§  Overhead: N redundant executions != Nx slower
•  N-2 redundancy on demand
•  Hide overhead within latencies of original code (could be

plenty for Exascale!)

§  Effectiveness:
•  In both fault detection and handling

Lawrence Livermore National Laboratory 19

Future work

§  Using multithreading for duplicated work:
•  thread vs. instruction/statement level redundancy

§  Include more fault handling policies

§  More ways to live with compiler optimizations
(CSE)
•  transformation at binary level

§  Automatically identify critical code portions for
added resilience
•  Probabilistic model of operations, sensitivity to input

characteristics

Lawrence Livermore National Laboratory 20

Thank You!

§  Questions?

